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Abstract. The classical heat law of Fourier associates an infinite speed of propagation to a thermal disturbance
in a material body. Such behavior is a violation of the causality principle. In recent years, several modifications of
Fourier's heat law have been proposed. In this work a modification of Fourier’s heat law based on the Maxwell-
Cattaneo-Fox (MCF) model is used to describe the influence of heat conduction at low temperatures and/or high
heat-flux conditions on Stokes' first problem for a dipolar fluid. The effects of discontinuous boundary data and a
finite propagation speed of thermal waves on the velocity and stress fields are investigated. In addition, special and
limiting cases of the material constants are examined. Lastly, results for the special case of equal dipolar constants
are compared to the corresponding results found using Fourier’s heat law.
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1. Introduction

According to Fourier’s heat law, thermal conduction in a homogeneous and isotropic medium
is governed by the phenomenological equation

q=—«Vo, (1.2)

whereq is the heat flux vectok > 0 is the constant thermal conductivity of the medium, and
0 is the absolute temperature distribution. When combined with the conservation of energy
law, and when the pressure and density gradients are assumed to be zero, Fourier’s heat law
results in the parabolic heat-conduction equation
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wherep is the density and, is the specific heat at constant pressure. Results obtained from
Equation (1.2) are generally in close agreement with experimental data for temperatures well
above absolute zero (room temperature for example). However, the parabolic nature of this
eqguation implies an infinite speed of heat propagation, thus violating the principle of causality.
Over the years, several researchers have proposed modifications to Fourier’'s heat law in an
effort to overcome the propagation speed defect. In 1867, Maxwell [1] derived the first gener-
alization of Fourier’s heat law. The first term of his equation [1, Equation (143)] corresponds
to the time derivative of the heat flux vector multiplied by a constant relaxation time (which is
termedrtg in this article). In Maxwell’'s workry was of a very small magnitude. He therefore
took it to be zero. In justification he remarked, ‘The first term of this equation (143) may be
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neglected, as the rate of conduction will rapidly establish itself’. Had Maxwell considered a
nonzero relaxation time, his modification of Fourier's heat law would have been the first to
give a finite speed of heat propagation. In 1944, Peshkov [2] was the first to observe thermal
waves (or second sound) propagating in liquid helium II. From his observations he concluded
that in liquid helium Il at 14° K the average velocity of the second sound is 19m/sec. In 1948,
Cattaneo [3] was the first to offer an explicit mathematical correction of the propagation speed
defect inherent in Fourier's heat conduction law. Cattaneo’s theory allows for the existence of
thermal waves which propagate at finite speeds. In Cattaneo’s theory these waves are the
means by which heat flow occurs in gases. Cattaneo’s heat law (or Cattaneo’s equation) is
expressed as

To?)—? +q=—«V0. (1.3)

For 1o = 0, Equation (1.3) reduces to Fourier’s heat law. Cattaneo’s heat conduction law
results in the hyperbolic equation
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whereC, is the heat capacity per unit volume and> 0. Equation (1.4) is a special case of

the general telegraph equation and is known as the dissipative or damped wave equation (see
Jouet al. [4, pp. 167- 200]). Chester [5], in 1963, stated that wave propagation will dominate
when
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and diffusion will dominate when the inequality is reversed. Over twenty years after Peshkov
first detected the second sound effect, Ackerreaal. [6] where the first to successfully
measure the speed of the temperature waves in solid helium. In 1984, Straughan and Franchi
[7] investigated the question of convective stability in the Bénard problem when the Maxwell-
Cattaneo (or MCF) heat law is used. The same problem was also analyzed by McTaggart and
Lindsay [8] in 1985. They demonstrated that there exists a significant difference in results
when the MCF model is used in place of Fourier’s heat law. In the MCF model, the evolution
of the heat flux vector is described by the equation

T0(qi — wijq;) = —q; — k0, (1.6)

whereuw;; is the vorticity. Forw,;; = 0 andg; = dq/dt, the MCF model reduces to the Cattaneo
equation. In 1995, Puri and Kythe [9] investigated the effects of using the MCF model in
Stokes’s second problem for a viscous fluid. In 1997, Puri and Kythe [10] also studied the
effects of the MCF model and discontinuous boundary data on the velocity gradients and
temperature fields occurring in Stokes’ first problem for a viscous fluid. They note that in the
theory of generalized thermoelasticity, the nondimensional thermal relaxation {idedined

asir = CP, whereC and P are the Cattaneo and Prandtl numbers respectively) is of the
order 102 (see also Puri [11] where it is defined/a¥ A detailed history of heat conduction
theory is given by Joseph and Preziosi in [12] and [13]. In addition to discussing various other
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models of heat conduction, these authors state that Cattaneo’s equation is the most obvious
and simple generalization of Fourier's law that gives rise to finite speeds of propagation. In
their review article, Dreyer and Struchtrup [14] discuss low temperature heat propagation
in dielectric solids where second effects are present. In addition, they point out that at low
temperatures Fourier's heat law ‘becomes measurably false’. Chandrasekharaiah [15] notes
that Cattaneo’s heat law should be used in both very low temperatute K) and high heat
flux (> 10° W/m?) applications.

It is generally known that in the nonlinear framework, Cattaneo’s equation does not satisfy
the entropy principle of thermodynamics. To resolve this, Coleetah [16] have shown that
it is necessary that the internal energy depends not only, dat also ong. This approach,
however, has led to some questionable results [13, 17]. A more realistic model for heat con-
ductors comes from Morro and Ruggeri [17]. They have proposed that heat conduction in
solids is governed by the equation

aq 00\
T0); + (1+ T(0)5> q=—kVo, (1.7)

wheret (0) is a temperature-dependant relaxation time. Equation (1.7) is a nonlinear gener-
alization of Cattaneo’s equation which fits the experimental data and is compatible with the
requirements of thermodynamics (see also Ruggfeal. [18]).

In this work we consider the influence of the MCF model on a dipolar fluid, a common
example being liquid sulphur dioxide [19]. Dipolar fluids can be considered as special cases
of fluids with deformable microstructure (Cowin [20]). According to Erdogan [21], this mi-
crostructure may consists of such entities as bubbles, atoms, particulate matter, ions or other
suspended bodies. In 1967, Bleustein and Green [22] presented the theory of dipolar fluids,
the simplest examples of a class of non-Newtonian fluids known as multipolar fluids. Green
and Naghdi [23] proposed an alternative form of dipolar inertia to that given in [22]. Ariman
et al. [24] note that in dipolar fluid theory, the second order gradient of the velocity vector
is inserted into the stress constitutive equations. Thus, dipolar fluid theory gives one vector
eqguation to describe the velocity field. As a result not all components of the stress and couple
stress tensors are known. Guram [25] has solved Stokes's first problem (see Schlichting [26,
pp. 72-73]) for a dipolar fluid for the special case of dipolar constdnts [. Saran [27]
investigated both Couette and Poiseuille flows of a dipolar fluid through a porous channel.
Straughan [28] studied the nonlinear stability problem in the case where a layer of dipolar
fluid is heated from below. Jordan [29] studied Stokes’s first and second problem for a dipolar
fluid under the MCF model for the case of equal dipolar constants. Puri and Jordan [30]
have investigated Stokes’s second problem for a dipolar fluid, also using the MCF model, for
arbitrary values of the dipolar constants.

One can consider this article as both a generalization of the research of Puri and Kythe [10]
to dipolar fluids and as an extension and refinement of the work of Jordan [29]. Our motivation
in doing this work stems from the ever growing number of low-temperature and/or high heat
flux applications of non-Newtonian fluids in areas such as medical research, space exploration,
and low-temperature physics. Lastly, we must note that in the general case of thermoviscous
fluids, particularly monoatomic gases, a complicated mutual interaction between temperature
and velocity fields exist (see Mueller and Ruggeri [31, pp. 1-61]). Thus, because of the
linear nature of the problem presented here, this work should be considered as only a first
approximation to a more complex problem.
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2. Mathematical formulation

Taking thez-axis of a cartesian coordinate system in the upward direction, let an incompress-
ible dipolar fluid fill the space > 0 adjacent to a flat vertical plate occupying theplane.
Initially, both fluid and plate are at rest and at constant temperéturéhe fluid’'s free stream
temperature. The flow is induced by heating of the plate in the f6ym- 6,) f (¢), whereg,,

is some constant; or by the motion of the plate alongzHaeis with velocityUpg(¢), where

Uy is a constant; or both. Furthermore, bgtfr) andg(z) are zero for time < 0. Under these
conditions no flow occurs in the and y-directions and the flow velocity at a given point in

the fluid depends only on its distance from the plate and the time.

The basic equations of continuity, momentum, and energy governing an isotropic, homo-
geneous, incompressible dipolar fluid as given by Bleustein and Green [22] and employing
the form of dipolar inertia proposed by Green and Naghdi [23] are, under the Boussinesq
approximation, given by

Ui,i = O, (21)

w(L—12V?)\V2u + p(Fy — Fixj) — pi — pll— B(O — 0)108k3

= p(L— d?V iy + pd?(veivi j + Veivji — Vigvij) s (2.2)

P(A+6S+08) — pr =—qi; + tndi + YkiyjAjik (2.3)

where the vector = (0,0, u(x, t)) represents the velocityy = 6(x,t), u the dynamic
viscosity, p the pressure, g the gravitational acceleratiphe coefficient of thermal expan-

sion, t;, the stress tensotl;, the strain tensord and! are nonnegative material constants
with the dimensions of length (termed the dipolar constarfigland ¥, are, respectively,

the monopolar (macroscopic) and dipolar (microscopic) body forces per unit missthe

heat supply function per unit mass per unit time,= A() is the Helmholtz free energy
function, S = —dA/d0 is the entropy, and;; is the Kronecker delta. Furthermore, commas
denote partial differentiation with respect to the space coordinates, dots represent material
derivatives, and the summation convention has been employed. The constitutive equations for
the stress tensaf; [22], the dipolar stress tensal;j, [22], and the heat flux vectay; of the

MCF theory for dipolar fluids are

7i; + ®8;; = 2ud;;, (2.4)

Xk + Widjx + Vi = h1dij Axmm + ho(Ajjx + Ajix) + h3Agji + v 50, (2.5)

t0(¢i — wijq;) = —q; — k0,; + aAjx, (2.6)
where

T =0ij + Zwijk + p(Fi; — i) = T4, (2.7)

Aijk = vijr = Aixj, (2.8)
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dij = 3ij +vj) = dji, (2.9)

the arbitrary functionsp and ¥; govern the pressure and arise from the solenoidal nature of
the velocity field,z, (¢ = 1, 2, 3) are material constanta,andy are also material constants
which provide thermomechanical coupling [22]; ;). are the components of the dipolar stress
tensor which are symmetric in the first two indices, is the monopolar stress tensor, dng

is the dipolar inertia. The dipolar inertia given by Bleustein and Green [22] and the alternative
form of dipolar inertia proposed by Green and Naghdi [23] are

Ty =d*(b.; — vjavrs), (2.10)
Ty = d?*(Vj; — VjkVki — VjkVik + ViiVk,j)s (2.11)
respectively. The pressugeand dipolar constarif are defined as

h1+ hs
m

p=d-—20,,, 1’ = > 0. (2.12)

Lastly, the material constants satisfy the following inequalities:
u =0, hi+ hz > 0, 2hy +h3 =0, h3 —hz > 0,
S5h1 — hy+ 2h3 > 0. (2.13)

Based on the arguments of Guram [25], the equation of motion reduces to

ou 9%u 33u 4
N _ 2 12 — gB0 — 2.14
or  Voxz Y axaar T = 9h(0 — b0, (2.14)

wherev = u/p is the kinematic viscosity and body forces have been neglected. 8jpce-
0 in this problem, the heat conduction equation is given by [10]

9%0 96 s 926
o _ 2.15
%2 + at  pc, e, dx2 ( )

We now introduce the following nondimensional quantities:

X/IEX, u/zi, Z/IUOZ 9/: 0_000’ G:Uglg(ews_eoo)’
Vv Uo Vv 9w — 900 UO
vpc K‘L’()Ug rOUg
P=-"2 C = A= =CP,
K vpc, v
dU, LU
= VAP, L= =2 (2.16)
v v

whereG is a modified Grashof number amrds defined here for future convenience. Using
(2.16), we may write the equations of motion and heat conduction as follows:
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U — Uxx — ljz_uxxt + lguxxxx = GO, (217)
and
APOy + PO, = Oy, (2.18)

where variable subscripts anand6 denote partial differentiation and the primes have been
suppressed. The nondimensional boundary conditions are

0(0,1) = f(1),u(0,1) = g(1), 0(00, 1) = u(c0,1) =0,
Uy (0,1) = My, uy (00, 1) =0, (219)

whereM,, a constant, is the nondimensional dipolar stress at the plate. The nondimensional
initial conditions are

0(x,0) =6,(x,0) =u(x,0 =0. (2.20)

Applying the Laplace transform with respect to time to Equations (2.17)—(2.19), and invoking
(2.20), we obtain

lzuxxxx (1 + Sl]z_)ﬁxx + su = Gé, (221)
and
APs%0 + PsO = 0,,, (2.22)

wheres is the transform parameter and a bar over a quantity denotes the corresponding quant-
ity in the transform domain. The temperature field in the transform domain is given in [10]
as

0(x,s) = f(s) expf—xvAPs2 + Ps]. (2.23)
Thus, the velocity field in the transform domain is
u(x,s) = ur(x,s) +uz(x, s) + uz(x, ), (2.24)
where
i} I3 |:M1 _ _ 2 g2 ]
= — e — e} — g(s){e " — ey 2.25
BVs—x)?2+&Ls s ? (2:29)
i ~Gf(s)
sA2P22TI(s)y/(s — x)2 + €
x [(APs®+ Ps){e2" —e "} — {217 — e V5], (2.26)

iz = Gf&) o H—xvAPs2 + Ps], (2.27)

s)\zpzzzn( )
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and where
2P12 — ]? PI2—]2_ ) a-pr
M(s) = 53 + 52 #> ( 22 ) , 2.28
() ="+ ( API3 s A2PI3 * A2p2ls (2.28)
202 — |2 A2(12 - 12) I [s+172F /(s — )2+
x=2_1 g =2 ’ - 1 F X 5’ (2.29)
I3 18 I> 2

and we now impose the additional conditidnd,, A > O.

3. Time-domain solutions

The temperature field solutiagh(x, #) will not be given here since it already appears in [10]. In
this section we invert Equations (2.25)—(2.27) for both impulsive and Heaviside-type boundary
data. Hence, taking (1) = g(r) = 8(¢) (i.e., f(s) = g(s) = 1), wheres(-) is the Dirac delta
function, and using the inverse Laplace transform theorem, in conjunction with the tables of
inverse Laplace transforms given in [32, pp. 227-250], we find

= 5<f>{%<e"‘”2+1)—i/0°°Md L1 sinxP@m)]

n ———y
4 n 2t Jo J(n+x)2+¢&

+M1122 /00 e sinxP ()]
0

dn + Myl2(e /2 — 1)
w12 +x)2+¢ ?

+H(t){% /0 e sinfx P (n)]dn

(3.1)

1 (> en—I1%)sinxP )] dn},

21 o Vi + )%+ &

— HQ) / ne " sinfx P (n)
Uz = ( )\,ZPZZ Q3(77, m

©sinxP ()]
+ AA (z)/ ——— " _dy
= Vi +x)?+ &
/ 050, e n Sln[xJ (n) dn}
+ x)2+¢

G 1 [* e sinxP (n)]
- Wzlzz [A4(t) - Z/o Q3(n, t) —————d
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/ 0s(n. 1 )e msinx P (n)] dy
T 0t E

1 o0 e sinxP (n)]
| 03,0 dp|t. 3.2
anf/o N e Ty "” (82

G t
us = H(t — cx) {WZIZ |:A4(l cx) eXp( 2; > + CX/ Ag(t — 0)B(x, g)d§j|} , (33)
2

cX

and takingf (t) = g(r) = H(@) (i.e., f(s) = g(s) = 1/s), whereH (-) is the Heaviside unit
step function, we have

Ui

X0 ANt of D O ANt o D
=H(t){l—i/ e Sln[xJ(n)]d +i e Sln[xJ(n)]d

] " om )y Vin+x)?+E&

(2M112 1) / e sinxP (n)]
B N TS

dy + Mal3(e" — 1)} , (3.4)

_y e " sinxP (n)]
uz = H() kzPlz / Qs3(n, )\/W U

e Sln[xJ 1
/ O04s(n, ) —/——— TRy dﬂi|

1 [ e sinxP (n)]
- Wzlzz [As(f) - Z/o Qa(n, f)T dn

e " sinxP ()] q

Vin+x)?+E&

1 o e " sinxP ()]
- Qs(n, 1) d ,
an%/o ot 0T E "”

G 1
u;;:H(t—cx){W[Ag,(t cx)exp< > )—i—cx/ A5(f—§)B(X,§)d§:|}, (3.6)
2 cx

1 R ;
+5/0 0a(n. 1)

(3.5)

where

L [n—1? 2
?(n)z_l\/n 1 V40 +5;‘,
I 2

—¢/(24) 2 _ 2
B(x, () = — = 1(” “Dx>, (3.7)

2)0\/C2 — A Px? ! 2
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(3.13)

and whereZ;(-) is the modified Bessel function of the first kind of order oe?l[-] denotes
the inverse Laplace transform operator;

A

_AUgP? —I§I5P + 3\ PI5 +1)°

(29 —3P}1Z + 9 PIAZ — 27).PE — 3P2I213 + 9\ P?l3 4 2P3I5)?

2916(1PE)8

2916(1PE)® (3.14)
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is the discriminant of the cubic polynomiBl(s); andnq, n,, n3 # 0 are the possible roots of
I(s) for P £ 1. ForA < 0 all roots are real and distinct, far = 0 all roots are real and we
have (*)n1 = ny = nzg = ng or (**) ny # np, = n3 = ng, and forA > 0 one root, say:,, is
real and the other two form the complex conjugate pag = a +ib(b # 0). ForP = 1 all
roots ofI1(s) are real and we denote the possible nonzero roots, bys, andng, where

—(25 —13) £ /1T + 412 124 315

, ne = .
2112 ° E

Finally, we letn, = n,+n(£ =0,1,2,3,4,5,6) andn, =a + n.

Clearly, there are six possible cases:6f, ¢), four corresponding t@ # 1 and the other
two for the caseP = 1. Furthermore, we call attention to the simple relationship betvieen
and the dipolar constants which determines the character of the solution fBrthé case.
Finally, we observe that; is a propagating wave with a phase velocity of 1/0sit is the
only propagating term of the velocity field.

n4s =

4. Propagating discontinuities

In this article we will only investigate: and its derivatives for propagating discontinuities.
The behavior ob in this regard has been discussed in [10] and will not be examined here.
Clearly, the parts of the velocity distribution denoted byand u,, and their derivatives,
remain continuous everywhere for- 0. Thus we need only examing and its derivatives

for jumps. In this work, we use the method developed by Boley [33] for determining the
propagating discontinuities of a function from its transform (see also Chadwick and Powdrill
[34]). We will apply Boley's method tas(x, r) and its temporal derivatives in the transform
domain. Then Hadamard’s lemma [35, pp. 491-525]

D ontay 8n+q+lu 1 8n+q+lu 41

—4 =8| —— -8 | —], .

Dr |:8x‘/8t”] |:8x‘78t”+1] + c |:8x‘/+18t”] @1
where$[-] denotes the jump discontinuity (or saltus) of a function across a singular surface
(or wavefront), the operator DiDdenotes differentiation with respect to time following the
wavefront, andh andg are nonnegative integers, will be used with the results obtained from

Boley's method to determine the jumps in the spatial and mixed derivativesTaf this end
we employ the well-known properties of the Laplace transform to obtain the relation

0"usz(x,t)
at"
Substituting Equation (2.27) in Equation (4.2) and expanding the result forsdrge small-
time), we have

us(x.1) G f(s)eVrP—xJPE [ 1 1 AP 2PI2_]?
us(x, 1) _ Gf(s) { n (x 2 1).,....](4,3)

ot A2 P22 8.2 P2

= s"iz(x, s). (4.2)

S4_" s5—n

Applying the method of Boley [33] to Equation (4.3) we find, foe= 0,1, 2,3 and f(z)=
8(1),
G e /P

5[1/[] — 5[14{] — 5[1,[”] = 0, 5[14[11] = W

(4.4)
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Table 1. Propagating jumps in resulting fromf (1) = §(¢)

@) Bluxxx] Sluxxt] Bluxtr] Slurer]
6(1‘) -G e—xa/P/4}L Ge—xa/P/4)L -G e—,n/P/ll}L Ge—,n/P/ll}L
13JAP APIZ APIZV/AP (xPIp)?

Table 2. Propagating jumps in resulting fromf (t) = H(t)

S@® Sluxxxx] Sluxxxt] Sluxxtt] Sluxttr] Slurree]
Hay GETE _GeTB GeVTW  _Gen/PW G n/TTa
12 13V3P API3 API3/iP (LPIp)?

Hence, at the wavefront;, u,, andu,, are all continuous and all time derivatives of order
greater than three do not exist. From Hadamard’s lemma we find, using (4.4), thator all
andg such thatr +¢q < 2

5 [ o } _o (4.5)

dx4ot"

Thus (4.1) reduces to

8n+q+l 8n+q+l
p [7] e [7} | (4.6)

dxatign dx49gn+l

for all » andg such that: + ¢ < 2. Hence, we are able to determine the propagating jump
discontinuities inz and all its derivatives across the wavefrant= ¢/c for f(r) = §(@).
Taking f(t) = H(t) andn = 0, 1, 2, 3, 4 we arrive at

G e VP4

Blul = Slur] = Slu] = Slutn] = 0. Slutue] = —5=5—

4.7)

In this case we find that, at the wavefront,u,, u;;, andu,,, are all continuous and all time
derivatives of order greater than four do not exist. Thus, in a manner similar to that shown
above for f(t) = 8(¢), the propagating jump discontinuities inand all its derivatives can

be determined forf (t) = H(¢). Tables 1 and 2 give the nonzero finite jumpssimand its
derivatives forf(r) = §(¢) and f (t) = H(¢), respectively. For a partial differential equation

of order N, discontinuities inu itself and its partial derivatives of orders.1., N — 1 are

said to be strong; discontinuities in partial derivatives of otgleN are known as weak [36].
Thus, as was found for a viscous Newtonian fluid [10], impulsive temperature boundary data
produces strong discontinuities in the velocity while Heaviside-type temperature boundary
data gives rise to weak discontinuities:nIn addition, it can be seen from Tables 1 and 2
that the magnitude of each of the jumps is proportional to the con6taist Hence/; is the

only dipolar constant to have an impact on the magnitudes of these discontinuities and the
coupling constang is the only parameter to influence their algebraic signs. Furthermore, we
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observe that letting — O (i.e., using Fourier’s heat law) results in all jumps given in Tables 1
and 2 going to zero. Actually, it can be easily shown using Boley's method:tlsadf class

C*(t > 0) under Fourier’s heat law or if thermal effects are removed, G = 0). Finally

we note that, although somewhat more laborious, the method of Boley [33] alone could have
been used to determine the jumps:iand all its derivatives (see [10]).

5. Monopolar and dipolar stresses

In dimensional form, the nonzero components of the monopolar and dipolar stegsse®]
¥ijx respectively, are given by [25]

ou a3u ou
Oxx = 0yy =0z = —pP = —®(1), Oxx = Ma’ 0y, = —(h1+ h3)ﬁ + Ma,
9%u 9%u 0%u
Yo = —2W (1) + hl@, Yo = (h1 + hS)ﬁ, Eyyz = hlﬁ,
9%u
szx = Exzx = _\Ij(t) + hZﬁ’ 2yzy = z:zyy = _qj(t)‘ (51)

We observe that, with the possible exception of those components which depend on the arbit-
rary functions¥ and ®, all stress components are of clad®¥(r > 0) when Fourier’s heat

law is assumed or if thermal effects are removed. As shown by Jordan [29, p. 29], when the
MCF model is considered anfi(r) = §(¢), the monopolar stress component suffers a

jump discontinuity (see Table 1). In nondimensional form, this jump is given by

G I
5[0”] = ﬁ e’ P/4)L. (52)

For f(+) = H(¢), Table 2 indicates that jump discontinuities now occur in the first derivatives
of o,,. We express these jumps as

$ 00y, _ _Gefx«/m Y3 0 — i e XVP/Ar (53)
9x ’ ot /AP

Lastly, itis of interest to note that both Equations (5.2) and (5.3) are independent of the dipolar
constantg; and/,.

6. Special and limiting cases

Returning to Equations (2.25)—(2.27), we observe that for dipolar fluids with large Prandtl
numbers €.g, various types of oils) all terms containing the coupling constaatre small.
Thus, asP becomes larges(x, t) — u1(x, t), whereu;, is the solution to (2.17) fo6& = 0.

Following Guram [25], we také; = [,. Doing so, we find that the transform domain
solution reduces to

i) = g - My G76)
s == [Sgs s )\PLZ(s—ml)(s—mz)]
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Figure 1. u vs.x for L = 0.1, M = 1.0, P = 0-7,¢ = 0.05. Bold: G = 0, solid: G = 5.0, broken:G = —5.0.
(@A =0-01, (b)r = 0.

LR My GF©
s—L-2]| L2 s APL2s(s — m3)
Gf(S) @cx/ (s+h)2—h?
) (6.1)
A2P2L25(s — mq)(s — m2)(s — m3)
whereL =1, = I, h = (21) 71,
1 a4\ + PL? 1 VAr + PL2 1-—
m=-—-—- ————r—-, my=——+——— mz=—/—. (62)
21 2L P 2\ 20L\/P AP

Equation (6.1) can be easily inverted and allows us to obtain closed-form solutions for the
velocity field. These solutions are given f@(z) = ¢(t) = H () in Appendix A. Clearly
when L is small, the behavior of the dipolar fluid considered here is approximately that of
the viscous Newtonian fluid studied by Puri and Kythe [10]. However, whéhe kinematic
viscosity, is small, theil. can become large. From (6.1) we observe that for ldrgal terms
containing the coupling constatt can be neglected. Thus, thermal effectsudn, r) again
disappear. Hence, wheh or P is large the equation of motion, Equation (2.17), becomes
uncoupled from Equation (2.18), the heat-conduction equation.

Lastly, we note that the velocity field under the classical (Fourier's) heat law can be found
by lettingA — 0in (2.25)—(2.27) and then inverting, except for the singular cake-ef, and
P = 1 simultaneously. However, to limit the size of this article, we will only give expressions
for u based on Fourier's heat law for the special case of equal dipolar constanfq@and
g(t) = H(t). These solutions are presented in Appendix B.

7. Numerical results

The solution corresponding tH(z) = g(¢t) = §(¢) is the fundamental solution, with respect

to time, of Equation (2.17) and is, therefore, a basic result of theoretical importance. Here,
however, we will discuss numerical results for the more physically applicable cg&e)o&

g(t) = H(¢). Figures 1-3 depiat vs.x and are generated for the cabe= [, = I,. With a
Prandtl number of @, the velocity profiles shown in Figures 1(a) and 1(b) correspond to gases
like air or helium. They illustrate the effects of the coupling const@mn « under the MCF
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b (b)

Figure 2. u vs.x for L = 0.1, M = 1.0, P = 0.7, = 0-05. Solid:A = 0-2, broken:» = 0. (a)G = 5.0,
(b) G = —5.0.

(b)
0. 0.
0. 0.
0. 0.
0. 0.
x G 0.1 5.3 0.3 01 05"

Figure 3. u vs.x for» = 0-01,L = 0-1,M = 1.0,¢ = 0-05. Solid:G = 5-0, broken:G = —5-0. (a) P = 0-7, (b)
P =37.
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Figure 4. 6 vs.x for t = 0-05. Solid:A = 0-2, broken:»x = 0. (a) P = 0-7, (b) P = 7-0.
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model (A > 0) and Fourier's heat lawx. = 0), respectively. Clearly, increasing increases
the velocity for both thet > 0 andA = O cases. In Figure 2 we see that an increase in
appears to decrease velocity when the fluid is he@fed 0) and increases velocity when the
fluid is cooled(G < 0). It is of interest to note that the results illustrated in Figures 1 and 2
were also found to be valid for viscous Newtonian fluids [10]. Figures 3(a) and 3(b) show the
effects of P onu under both heating (solid curve) and cooling (broken curve) conditions. It is
obvious that for both? = 0.7 and P= 3.7 (P = 3.7 corresponding to a freon-type fluid),
G > 0O results in a greater velocity. Furthermore, we observe th#& im&rease, th&s > 0
curve drops while th& < 0 curve rises (i.e., each tending towards the curve corresponding
to G = 0). Thus, as was shown in Section 7, we find that increagimgduces the influence
of temperature on the velocity field.

Finally, in Figure 4 we plo® vs.x for both the MCF model (solid curve) and Fourier’s
(broken curve) heat law. In Figure 4(a) we again use a Prandtl numbe¥ ofvlile in Fig-
ure 4(b) a Prandtl number of(, corresponding to water, is employed. The discontinuity in
under the MCF model is clearly visible in Figure 4. Also, we note that the temperature based
on the MCF model is greater than the temperature resulting from Fourier's heat law in the
region where the MCF based temperature wave has propagateth¢ interval O< x < #/c¢).
Furthermore, this result seems to be independe#. dthe reason for this is that the solution
of the parabolic equation resulting from Fourier's heat law instantaneously diffuses the heat
applied to the boundary = 0 throughout the entire half-spage> 0. In contrast, the MCF
model gives rise to a hyperbolic equation. As is generally known, the solution of a hyperbolic
equation propagates boundary data into the solution domain at a finite speed (in outase 1/
Thus, for a givenr > 0, heat supplied at = 0 is restricted to a slab of thicknes&: (see also
[4, pp. 172-177]).

8. Conclusions

Based on the analysis presented above, we give the following conclusions:

() Under the MCF model there are six possible caseqoft), four corresponding t® - 1
(the cases of the discriminant) and two corresponding t8 = 1.

(i) As L or P becomes large, Equations (2.17) and (2.18) uncouple; thermal influenaes on
vanish.

(iii) A discontinuity in velocity boundary data does not propagate.

(iv) Forx > 0, impulsive temperature boundary data produces jumps in the third order deriv-
atives ofu and Heaviside-type temperature boundary data produces jumps in the fourth
order derivatives ofi. Since the equation of motion is of fourth order, takif@) = §(¢)
produces strong discontinuitiesdirwhile discontinuities resulting fronf (¢) = H(¢) are
weak.

(v) The magnitudes of the jumps inare proportional taG//3 and are independent of the
dipolar constant;. The magnitudes of the jumps in the monopolar stress compenent
are proportional ta@ and are independent of bathandi,.

(vi) IncreasingG increases velocity.

(vii) Increasinga or P reduces velocity folG > 0 (heating) and increases velocity 1Gr< 0
(cooling).

(viii) The temperature resulting from the MCF model is greater than the temperature satisfying
Fourier's heat law on the interval @ x < ¢/c.
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Appendix A

Inverting Equation (6.1) foy (r) = H(t) and P # 1, we obtain

G ( L4e/L?

_ —x/L L2 _ 11— MyL?) + —
u(x, 1) H(r){e [H(e’ DA=MED 5\ T ) A= mal?)

emlt emgt 1
+ -
m1(L—m1L?)(my —mp)  ma(l—mpL?)(my —mp)  mimp

AP(1— M1L? (1 — m3L?) + GL*
AP(1—m3L?)

/L?
x [erfc(i) - etT(ex/L erfduvy (x/L, 1L?)] + e /L erfdv_(x/L, t/LZ)]):|

24/t
G t 2 x2 X
[ Lo ax/4 _ [ 2 -~
+1—P[x ﬂe <2+t)erfc(2ﬁ>}
G x gnat
- - @ Y= Jm3
kPm%(l—mng) [erfc(zﬁ) 5 (e erfdvy (x/m3, tm3)]

+ e VM3 erfu_(x/m3, tms)])} }

G ! @nit=¢)
+H(I—CX) m CX‘/CX

gn2(t=¢) g@n3t=¢)

m2(my — mp)(my — m3)

2 T
m5(mp —m)(mp —m3)  m3(mz —my)(m3z — my)

mimp + mim3 + mom3s t—¢
- 2 2 9 - B()C, é‘) dg‘
mimsmsy mimam3
N efchx eml(tfcx)
m2(my — mp)(my — m3)

emz(t—cx) emg(t—cx)

T T
m5(mp —m1)(mz —m3)  m3(m3z —m1)(m3 — my)

myimp +mim3s + moyms t—cx )i“ (A1)
- 2,2 2 - ’ '
mymsmsy mimam3

where erfd] is the complementary error function and

v (x, 1) = Ziﬁ + V1. (A.2)

For f(t) = H(t) and P = 1, Equation (6.1) becomes after inversion
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4 /L2
_ ox/L /L2 _ 2, G L°¢
ux, 1) H(t){ |:l+(et DA - ML)+ ((l m1L2)(1 — myL?)

gnit anat 1 >:|
— + p—
mi(1—m1L?)(m1 —mp)  mo(l—mpL?)(my —mp)  myimp

2 _ 4 /L2
+A(M1L 1) -GL [e’ /L erfquy (x/L, t/L?)]

A

+e L erfqu_(x/L,1/L?)])

—erfc(zd_)] +% [L t+ (;Z + % + f) erfc(Z\/_)
(s ]

n1(t—¢)
+H(t—x«/_){ [«/—/ ( o
ml(ml_mZ)

gn2(t—0) . m2 + mymy + m3

m3(my — my) m3m3
+(m1+n;2)£t—§)+ (=9 )B(x s
mymy 2mymy

x/xﬁﬁ( @ni(t—xv1) gn2(t—x+/A)
+e

3 T3
my(my —mp)  my(mp—mj)

+m§ + mymy + m3 L mitm —xVh) |~ xﬁ)zﬂ} .

3.3 2.2
m1m2 mlm2 2m1m2

Appendix B
LettingA — 0in (6.1) and then inverting fof (t) = g(r) = H(t) andP # 1, we have

2
u(x,t) = H(t) {e"‘/L [1+ @/~ DA MyL?) + GL? - 1G_—Lp(et/L2 B PeI/LZP)}

(1 P)Y(1— M1L?%) — GL? erfc
1-P 2J

e
= e"/L erfdvy (x/L, t/L?)]

2
—x/L 2 —L =
4e erfdv—(x/L,t/L )])i| 1—P [( 2 +[>

(A.3)
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X _ —x2/4t
xerfc (—Zﬁ) x - i|
G |:<P—+z>erfc(—,/£>—x ﬂeP"Z/‘":|
2V ¢ b4
GPL2 x [P\ &/FLY )
+m[erfc<E 7)— 3 e/~ erfdvs(x/L, t/(PL9))]

+e /L erfdv_(x/L, t/(PLZ)])} } (B.1)

Whenl; = I and P = 1 simultaneously, we cannot findbased on Fourier's heat law by letting— 0 in

Equation (6.1) and then inverting. We must find it directly by settings I = L in (2.17),» = 0in (2.18), and
dropping the initial condition of; in Equation (2.20). Thus, fof (t) = g(t) = H(t),l1 =lp = L,andP = 1u

based on Fourier’s heat law is given by

u(x, 1) = H(t){e_"/L [1+(e’/1‘2 —1)(1—M1L2)+GL2+Ge’/L2(t—Lz):|

/L?
+(1— L2(M1 + G)) [erfc(%) - etT(ex/L erfdvy (x/L, 1/L?)]

/L2
+e /L erfqu_(x/L, z/LZ)])] - % [eX/L(Zt + Lx)erfdvs (x/L, t/L?)]

+e /L2t — Ly)erfdv_(x/L, t/Lz)]i|

GLée/L?
+

[x e*/L erfqvy (x/L, t/L?)] — x e /L erfqu_(x/L, z/LZ)]:|
_ 2
+€ X\/ze_xz/4t — 7)636 e —x2
2 T 2J/nt

i x4
xerfc(Z«[) ( +xt> «/7?“ (B.2)
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